summaryrefslogtreecommitdiff
path: root/catenary.lua
blob: abe18e1a0a027dab8b3e0be6c7f9c153c056a400 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
local G = love.graphics

local function atanh(x)
	return (1/2) * math.log((1+x)/(1-x))
end

local function solve_for_A(r)
	local A
	if r < 3 then
		A = math.sqrt(6 * (r-1))
	else
		A = math.log(2*r) + math.log(math.log(2*r))
	end
	for i=1,5 do
		A = A - (math.sinh(A) - r*A)/(math.cosh(A)-r)
	end
	return A
end

local function plot(f,x0,xn)
	local n = 30
	x0 = x0 or G.inverseTransformPoint(0,0)
	xn = xn or G.inverseTransformPoint(G.getDimensions(),0)

	if xn < x0 then
		xn,x0 = x0,xn
	end

	local h = (xn-x0)/n
	local ps = {}
	for i=0,n do
		local x = x0 + i*h
		local y = f(x)
		table.insert(ps,x)
		table.insert(ps,y)
	end
	return ps
end

local function catenary0(x1,y1,x2,y2, L)
	-- https://math.stackexchange.com/a/3557768
	y1 = -y1
	y2 = -y2
	local dx = x2-x1
	local dy = y2-y1
	local mx = (x1+x2)/2
	local my = (y1+y2)/2

	local D = math.sqrt(dx^2+dy^2)
	L = L or D+(1/(D+0.3))

	local r = math.sqrt(L^2 - dy^2)/dx
	local A = solve_for_A(r)

	local a = dx/(2*A)
	local b = mx - a*atanh(dy/L)
	local c = my - L/(2*math.tanh(A))

	return function(x) return -(a * math.cosh((x-b)/a) + c) end
end


local function catenary(x1,y1, x2,y2, L)
	local D = math.sqrt((x2-x1)^2 + (y2-y1)^2)
	-- L = L or D+(1/(D+0.3))
	L = L or D+(0.1/(D+0.1))
	-- L = D + 0.1

	if x2 < x1 then
		x1,x2 = x2,x1
		y1,y2 = y2,y1
	end

	local f = catenary0(x1,y1,x2,y2,L)
	return plot(f, x1,x2)
end

return {
	catenary = catenary
}


--[[
local Ps = {{-1,1}, {1,1}}

function love.update(dt)
	for b = 1,2 do
		if love.mouse.isDown(b) then
			Ps[b] = {G.inverseTransformPoint(love.mouse.getPosition())}
		end
	end
end


function love.draw()
	local W,H = G.getDimensions()
	G.clear(1,1,1)
	G.setColor(0,0,0)
	G.origin()
	local dx = Ps[1][1] - Ps[2][1]
	local dy = Ps[1][2] - Ps[2][2]
	local D = math.sqrt(dx^2+dy^2)
	local L = D+(1/(D+0.3))
	-- local L = D+1
	G.print(("%.2f\n%.2f\n%.2f"):format(L,D,L-D),10,10)
	G.setLineWidth(0.01)
	G.translate(W/2,H/2)
	G.scale(50)

	G.setColor(0.8,0.8,0.8)
	for i=-10,10 do
		G.line(-10,i,10,i)
		G.line(i,-10,i,10)
	end

	G.circle('line',0,0,1)

	-- G.setColor(0,0,0)
	-- -- plot(function(x) return x^2 end)
	-- plot(math.tanh)
	-- G.setColor(0,1,0)
	-- plot(atanh)

	G.setColor(0,0,0)
	G.line(catenary(Ps[1][1],Ps[1][2], Ps[2][1], Ps[2][2]))

	G.setColor(1,0,0)
	G.circle('fill',Ps[1][1],Ps[1][2],0.05)
	G.setColor(0,0,1)
	G.circle('fill',Ps[2][1],Ps[2][2],0.05)
end
--]]