local class = require'r.class' local rmath = require'r.math' local Pos = class() function Pos.new(cls) return setmetatable({},cls) end function Pos.init(self,x,y) self.x = x self.y = y return self end function Pos.make(cls,...) return cls:new():init(...) end function Pos.__add(self,other) return Pos:make(self.x+other.x,self.y+other.y) end function Pos.__sub(self,other) return Pos:make(self.x-other.x,self.y-other.y) end function Pos.__unm(self) return Pos(-self.x,-self.y) end function Pos.__mul(a,b) if type(a) == "number" then return Pos:make(a*b.x,a*b.y) elseif type(b) == "number" then return Pos:make(a.x*b,a.y*b) else error("can only multiply Pos by scalar") end end function Pos.__div(a,b) assert(type(b) == "number","can only divide Pos by scalar") return a*(1/b) end function Pos.__eq(a,b) return a.x==b.x and a.y==b.y end function Pos.lensq(self) return self.x^2 + self.y^2 end function Pos.len(self) return math.sqrt(self:lensq()) end function Pos.norm(self) local l = self:len() if l < 0.00001 then return Pos(0,0) else return self/l end end function Pos.l1(self) return math.abs(self.x) + math.abs(self.y) end function Pos.linf(self) return math.max(math.abs(self.x),math.abs(self.y)) end function Pos.dot(self,other) return self.x*other.x+self.y*other.y end function Pos.vals(self) return self.x, self.y end function Pos.floor(self) return Pos:make(math.floor(self.x),math.floor(self.y)) end function Pos.ceil(self) return Pos:make(math.ceil(self.x),math.ceil(self.y)) end function Pos.round(self) return Pos:make(rmath.round(self.x),rmath.round(self.y)) end function Pos.divmod(self,size) local div = (self/size):floor() return div, self-div*size end function Pos.__tostring(self) return string.format("(%.2f,%.2f)",self.x,self.y) end function Pos.key(self) return self.x .. ':' .. self.y end function Pos.unkey(cls,k) local a,b = k:match"(%-?%d+):(%-?%d+)" return Pos(tonumber(a),tonumber(b)) end function Pos.rot(self,a) local c,s = math.cos(a),math.sin(a) -- [ C, -S ] -- [ S, C ] return Pos(self.x*c - self.y*s, self.x*s + self.y*c) end function Pos.sproj(self,b) return self:dot(b:norm()) end function Pos.proj(self,b) return self:sproj(b)*b:norm() end function Pos.angle(self) return (math.atan2 or math.atan)(self.y,self.x) end -- inplace arithmetic function Pos.addby (self,by) self.x=self.x+by.x self.y=self.y+by.y end function Pos.addbyv(self,x,y)self.x=self.x+x self.y=self.y+y end function Pos.subby (self,by) self.x=self.x-by.x self.y=self.y-by.y end function Pos.subbyv(self,x,y)self.x=self.x-x self.y=self.y-y end function Pos.mulby (self,by) self.x=self.x*by self.y=self.y*by end function Pos.divby (self,by) self.x=self.x/by self.y=self.y/by end return Pos